Пробник для проверки импульсных бп. Как проверить импульсный трансформатор Как проверить импульсный трансформатор осциллографом

  • 01.07.2023

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Основным элементом источника питания цифровых приборов является устройство преобразования тока и напряжения. Поэтому при поломке оборудования часто подозрение падает именно на него. Проще всего проверить импульсный трансформатор мультиметром. Существуют несколько способов измерений. Какой выбрать - зависит от ситуации и предполагаемых повреждений. При этом самостоятельно выполнить проверку любым из них совсем несложно.

Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго - выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Подготовка и проверка

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

С цифровым мультиметром проще. В его конструкции используется анализатор, который следит за состоянием батареи и при ухудшении её параметров выводит на экран тестера сообщение о необходимой её замене.

При проверке параметров трансформатора используется два принципиально разных подхода. Первый заключается в оценке исправности непосредственно в схеме, а второй - автономно от неё. Но важно понимать, что если ИТ не выпаять из схемы, или хотя бы не отсоединить ряд выводов, то погрешность измерения может быть очень большой. Связано это с другими радиоэлементами, шунтирующими вход и выход устройства.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного. В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом -|>| --))). Для определения обрыва к цифровому прибору подключаются измерительные провода. Один вставляется в разъёмы, обозначенные V/Ω, а второй - в COM. Галетный переключатель переводится в область прозвонки. Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным - к одному её выводу, а чёрным - к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на короткое замыкание. Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока. Для проведения тестирования мультиметр переключается в режим проверки сопротивления. Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки). Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым - последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Измерения напряжения и тока

При подозрении на неисправность трансформатора тестирование можно провести, и не отключая его полностью от схемы. Такой метод проверки называется прямым, но связан с риском получить удар электрическим током. Суть действий в измерении тока заключается в выполнении следующих этапов:

  • из схемы выпаивается одна из ножек вторичной обмотки;
  • провод чёрного цвета вставляется в гнездо мультиметра COM, а красного - подключается к разъёму, обозначенному буквой А;
  • переключатель устройства переводится в положение, соответствующее зоне ACA.
  • щупом, подключённым к красному проводу, касаются свободной ножки, а к чёрному - места, к которому она была припаяна.

При подаче напряжения, если трансформатор работоспособный, через него начнёт протекать ток, значение которого и можно будет увидеть на экране тестера. Если ИТ имеет несколько вторичных обмоток, то сила тока проверяется на каждой из них.

Измерение же напряжения заключается в следующем. Схема с установленным трансформатором подключается к источнику питания, а затем тестер переключается на область ACV (переменный сигнал). Штекеры проводов вставляются в гнёзда V/Ω и COM и прикасаются к началу и концу обмотки. Если ИТ исправен, то на экране отобразится результат.

Снятие характеристики

Чтобы иметь возможность проверить трансформатор мультиметром таким методом, необходима его вольт-амперная характеристика. Этот график отображает зависимость между разностью потенциалов на выводах вторичных обмоток и силы тока, приводящей к их намагничиванию.

Суть метода лежит в следующем: трансформатор извлекается из схемы, на его вторичную обмотку с помощью генератора подаются импульсы разной величины. Подводимой на катушку мощности должно быть достаточно для насыщения магнитопровода. Каждый раз при изменении импульса измеряется сила тока в катушке и напряжение на выходе источника, а магнитопровод размагничивается. Для этого после снятия напряжения ток в обмотке увеличивается за несколько подходов, после чего снижается до нуля.

По мере снятия ВАХ её реальная характеристика сравнивается с эталонной. Снижение её крутизны свидетельствует o появление в трансформаторе межвиткового замыкания. Важно отметить, что для построения вольт-амперной характеристики необходимо использовать мультиметр с электродинамической головкой (стрелочный).

Таким образом, используя обычный мультиметр, можно с большой долей вероятности определить работоспособность ИТ , но для этого лучше всего выполнить комплекс измерений. Хотя для правильной интерпретации результата, следует понимать принцип работы устройства и представлять, какие процессы происходят в нём, но в принципе для успешного измерения достаточно лишь уметь переключать прибор в разные режимы.

Данная статья отвечает на вопросы: как проверить импульсный трансформатор и как проверить ТДКС .
Метод №1

Для проверки работоспособности трансформатора понадобится осциллограф и звуковой генератор с диапазоном частоты от 20 кГц до 100 кГц. Через конденсатор с емкостью 0,1-1 мкФ подается синусоидальный импульс с амплитудой 5-10 В на первичную обмотку проверяемого преобразователя. Сигнал вторичной обмотки измеряется подключенным к ней осциллографом. Если синусоидальный сигнал не искажен, на любом из участков частотного диапазона, то проверяемый трансформатор исправен. Искаженная синусоида свидетельствует о неисправности преобразователя. На рисунке 1 схематически показан способ подключения. На рисунке 2 – форма синусоидальных сигналов.

Рис. 1. Схема подключения тестируемого трансформатора (метод №1)
Рис. 2. Формы синусоидальных сигналов (метод №1)
Метод №2

Чтобы проверить исправность импульсного трансформатора данным методом, для начала необходимо параллельно подключить конденсатор емкостью 0,01-1 мкФ к первичной обмотке и с помощью генератора звуковых частот подать на обмотку сигнал с амплитудой 5-10 В. Далее, изменяя частоту сигнала генератора нужно создать резонанс в параллельно подключенном колебательном контуре и, с помощью осциллографа, контролировать амплитуду импульса. Если в работоспособном преобразователе замкнуть вторичную обмотку, то колебания в контуре прекратятся. Из чего можно сделать вывод, что из-за короткого замыкания в витках нарушается резонанс в колебательном контуре. Поэтому, если в тестируемом трансформаторе имеются короткозамкнутые витки, не зависимо от частоты сигнала, резонанс будет отсутствовать. Схема подсоединения всех элементов изображена на рисунке 3

Рис. 3. Схема подключения тестируемого трансформатора (метод №2)
Метод №3
Данный метод проверки трансформатора такой же, как и предыдущий, но с небольшим отличием: подключение конденсатора не параллельное, а последовательное. Если в обмотке трансформатора присутствуют короткозамкнутые витки, при резонансной частоте происходит обрыв колебаний в контуре и в дальнейшем вызвать резонанс будет невозможно.
Способ подключения схематически показан на рисунке 4.
Рис. 4. Схема подключения тестируемого трансформатора (метод №3)
Метод №4
Три предыдущих метода лучше подходят для тестирования разделительного трансформатора и трансформатора питания, а проверить работоспособность преобразователя ТДКС с помощью этих способов можно лишь приблизительно. Оценить пригодность строчного трансформатора можно следующим образом.

По коллекторной обмотке проверяемого преобразователя нужно пустить прямоугольный частотный импульс 1-10кГц с небольшой амплитудой (подойдет выходной сигнал для калибровки осциллографа). В то же место требуется подключить вход осциллографа и, исходя из полученного изображения, можно делать выводы. Если ТДСК исправен, то амплитуда наблюдаемых продифференцированных сигналов будет примерно такой же, как и исходные прямоугольные импульсы. При наличии в трансформаторе короткозамкнутых витков, на картинке будут видны короткие продифференцированные сигналы с амплитудой ниже в несколько раз, чем у исходного прямоугольного импульса.

Такой метод проверки считается рациональным, так как для тестирования ТДКС необходим всего лишь один измерительный прибор. Но стоит также учитывать, что не все осциллографы оснащены выходом генератора, который используется для калибровки прибора. К примеру, довольно распространенные осциллографы С1-94 и С1-112 не оборудованы отдельным генератором калибровки. Чтобы решить данную проблему, можно самостоятельно собрать простой генератор, который сможет поместиться на одной микросхеме. К тому же его не сложно установить в корпус осциллографа, что обеспечит быструю и эффективную проверку ТДКС трансформаторов. Схема сборки генератора изображена на рисунке 5.

Рис. 5. Схема генератора (метод №4)
Собранный генератор устанавливается внутри осциллографа в любом подходящем месте, питание подводится от 12 В шины. В качестве включателя удобней использовать тумблер сдвоенного типа (П2Т1-1В), который лучше разместить на передней части устройства, рядом с входным разъемом осциллографа.
Питание на генератор подается через одну пару контактов, через другую пару контактов соединяется вход самого осциллографа с выходом генератора. Благодаря чему, чтобы проверить исправность трансформатора, достаточно соединить обмотку преобразователя и вход осциллографа простым сигнальным проводом.
Метод №5

В этом методе описывается проверка ТДКС на межвитковые короткие замыкания и обрывы в обмотках без использования генератора. Перед началом тестирования преобразователя нужно отсоединить его вывод от источника электропитания (110-160 В). Далее, с помощью специальной перемычки необходимо замкнуть коллектор выходного транзистора строчной развертки с общим проводом. После чего узел электропитания по цепи 110-160 В нужно нагрузить электролампой в 40-60 Вт, 220 В. Теперь следует найти на вторичных обмотках преобразователя узла электропитания напряжение в 10-30 В и пропустить его через транзистор, с сопротивлением10 Ом, на отсоединенный вывод ТДКС. Сигнал резистора контролируется осциллографом. Если проверяемый трансформатор имеет межвитковые замыкания, то изображения будет выглядеть как «грязно-пушистый прямоугольник», и основная часть напряжения упадет на резисторе. Если замыкания отсутствуют, то рисунок прямоугольника будет чистым, а падение электросигнала на резисторе составит не более чем несколько долей Вольт.

Контролируя сигналы на вторичных обмотках, можно узнать, исправен трансформатор или нет. Если на картинке изображен прямоугольник, значит обмотка целая, если прямоугольника нет – обмотка оборвана. Далее нужно убрать резистор сопротивления (10 Ом) и повесить на все вторичные обмотки ТДКС нагрузку 0,2-1,0 кОм. Если на выходе изображения такое же, как и на входе, то ТДКС трансформатор исправен.

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.

Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.

Рис. 2. Формы наблюдаемых сигналов

Способ 2

Необходимое оборудование:

  • Генератор НЧ,
  • Осциллограф

Принцип работы:

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.

Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить

Как проверить импульсный трансформатор мультиметром

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Методика проверки аналоговым (стрелочным) измерительным прибором

  1. Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  2. После в гнёзда тестера вставляются два провода и перемыкаются накоротко.
  3. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Как проверить импульсный трансформатор на межвитковое замыкание и обрыв

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного.

В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом обозначения диода на схеме.

  • Для определения обрыва к цифровому прибору подключаются измерительные провода.
  • Один вставляется в разъёмы, обозначенные V/Ω, а второй - в COM.
  • Галетный переключатель переводится в область прозвонки.
  • Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным - к одному её выводу, а чёрным - к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на межвитковое и короткое замыкание.

Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока.

Для проведения тестирования мультиметр переключается в режим проверки сопротивления.

Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки).

Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым - последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Видео: Как проверить импульсный трансформатор?

В связи с широким распространением импульсных блоков питания, в различной технике, требуется в случае поломки, уметь самостоятельно выполнять их ремонт. Все это, начиная от маломощных зарядных для смартфона, со стабилизацией напряжения, блоков питания цифровых приставок, ЖК и LED ТВ и мониторов, до тех же самых мощных компьютерных блоков питания, формата ATX, простейшие случаи ремонта которых, мы уже рассматривали ранее, это все будут .

Фото - импульсный блок питания

Также ранее было сказано, что нам для проведения большинства измерений, бывает достаточно обычного цифрового мультиметра. Но здесь есть один важный нюанс: при проверке, например измеряя сопротивление, либо в режиме звуковой прозвонки, мы можем определить только условно не рабочую деталь, по низкому сопротивлению, между ее ножками. Обычно оно составляет где-то от нуля, до 40-50 Ом, либо обрыв, но тогда для этого нужно знать, какое сопротивление должно быть, между ножками у рабочей детали, что не всегда есть возможность проверить. Но в случае проверки работоспособности ШИМ контроллера, этого обычно бывает недостаточно. Нужен либо осциллограф, либо определение его работоспособности, по косвенным признакам.

Мультиметр дешёвый DT

Сопротивление между ножками может быть и выше этих пределов, а микросхема на деле, может быть нерабочая. Но недавно столкнулся с таким случаем: разъем шлейфа питания, идущий с блока питания на скалер, сверху имел доступ для измерения только к верхнему, из двух рядов контактов на разъеме, нижний был скрыт корпусом, и доступ к нему имелся только с обратной стороны платы, что сильно затрудняет ремонт. Даже простое измерение напряжения на разъемах, в такой ситуации, бывает затруднено. Требуется второй человек, который согласится держать плату, на разъеме которой, ты будешь проводить измерения напряжения на выводах, с обратной стороны платы, причем часть деталей там, находится под сетевым напряжением, а сама плата находится на весу. Это не всегда возможно, часто люди, которых просишь подержать плату, просто боятся брать ее в руки, особенно если это платы питания, с одной стороны они правильно делают, меры предосторожности с не подготовленным персоналом, всегда должны быть более строгими.

ШИМ контроллер - микросхема

Так как же быть? Как можно быстро и без заморочек, условно проверить работу ШИМ контроллера, а если быть более точным, цепей питания, а одновременно и импульсного трансформатора, повышающего трансформатора, питающего лампы подсветки? А очень просто... Недавно нашел один интересный способ на Ю-тубе, для мастеров, автор очень доступно объяснял все. Начну издалека.

Трансформатор

Что есть, упрощенно говоря, обычный трансформатор? Это две, или более обмоток, на одном сердечнике. Но здесь есть один нюанс, которым мы и воспользуемся, сердечник, как и сами обмотки, в теории могут быть раздельными, и просто находиться рядом, близко друг от друга. Параметры при этом сильно ухудшатся, но для наших целей, этого будет более чем достаточно. Так вот, вокруг каждого трансформатора, или дросселя, со значительным количеством витков, после включения питания схемы, присутствует магнитное поле, и оно тем больше, чем больше витков у обмотки трансформатора, или дросселя. Что же будет, если мы к обмотке трансформатора или дросселя, включенного в сеть устройства, поднесем другой дроссель, например с индуктивностью 470 мкГн, а нам для нашего пробника нужен именно такой, нагруженный светодиодом? Например такой, как на фото ниже:

Другими словами, магнитное поле дросселя или трансформатора, будет пронизывать у нас, витки нашего дросселя, и на выводах его появится напряжение, которое можно будет использовать, в нашем случае, для индикации работоспособности схемы блока питания. Подносить пробник разумеется, нужно как можно ближе к проверяемой детали, и дросселем вниз. Как выглядят детали на плате, к которым нужно подносить наш пробник?

На плате обведены импульсный трансформатор красным, и трансформатор ламп подсветки зеленым. Если схема работает исправно, при поднесении пробника к ним, должен загореться светодиод. Это означает что питание на нашу, образно говоря проверяемую индуктивность, поступает. Разберем на практике. Если выходной транзистор пробит, не будет работать импульсный трансформатор.

На схеме снова выделено красным. Если пробит диод Шоттки, на выходе, после трансформатора, не будет индикации на дросселе фильтра. Но здесь есть один нюанс, если у дросселя на плате, небольшое количество витков, свечение будет либо еле заметным, либо вообще будет отсутствовать. Аналогично, если пробиты, например транзисторные ключи, или диодные сборки, через которые приходит питание на повышающий трансформатор, для ламп подсветки, LCD монитора или телевизора, не будет индикации при проверке на этом трансформаторе.

Стоимость данного дросселя в радиомагазине всего 30 рублей, также иногда они встречаются в блоках питания ATX, обычного светодиода, в стеклянной колбе 5 рублей. В результате мы имеем, простой, дешевый, и очень полезный при ремонтах прибор, который позволяет провести предварительную диагностику, импульсного блока питания, в течение буквально одной минуты. Условно говоря, данным пробником можно проверить, наличие напряжения на всех деталях, представленных на следующем фото.

Я пользуюсь данным пробником пока всего 3-4 дня, но уже считаю, что могу рекомендовать его к использованию, всем начинающим радиолюбителям - ремонтникам, пока еще не имеющим, в своей домашней мастерской, осциллографа. Также этот пробник, может быть полезен тем, кто на выездах. Всем удачных ремонтов - AKV.