Ракета с ядерным реактором. Новое супероружие России: что такое ядерный ракетный двигатель

  • 22.08.2023


В конце прошлого года российские ракетные войска стратегического назначения испытали совершенно новое оружие, существование которого, как раньше считалось, невозможно. Крылатая ракета с ядерным двигателем, которой военные эксперты дают обозначение 9М730 - именно то новое оружие, о котором президент Путин говорил в своем Послании Федеральному собранию. Испытание ракеты проводилось предположительно на полигоне Новая земля, ориентировочно в конце осени 2017 года, однако точные данные будут рассекречены еще не скоро. Разработчиком ракеты, также предположительно, является Опытное конструкторское бюро "Новатор" (город Екатеринбург). По заявлению компетентных источников ракета в штатном режиме поразила цель и испытания были признаны полностью успешными. Далее в СМИ появились предполагаемые фотографии пуска (выше) новой ракеты с ядерной силовой установкой и даже косвенные подтверждения, связанные с присутствием в предполагаемое время испытаний в непосредственной близости от полигона "летающей лаборатории" Ил-976 ЛИИ Громова с отметками "Росатома". Однако вопросов появилось еще больше. Реальна ли заявленная возможность ракеты осуществлять полет неограниченной дальности и за счет чего она достигается?

Характеристика крылатой ракеты с ядерной силовой установкой

Характеристики крылатой ракеты с ЯСО, появившиеся в СМИ сразу после выступления Владимира Путина, могут отличаться от реальных, которые будут известны позже. На сегодняшний день достоянием общественности стали следующие данные по размерам и ТТХ ракеты:

Длина
- стартовая - не менее 12 метров,
- маршевая - не менее 9 метров,

Диаметр корпуса ракеты - около 1 метра,
Ширина корпуса - около 1.5 метров,
Высота хвостового оперения - 3.6 - 3.8 метров

Принцип работы российской крылатой ракеты с ядерным двигателем

Разработки ракет с ядерной силовой установкой вели сразу несколько стран, причем разработки начались еще в далеких 1960-х годах. Конструкции, предложенные инженерами отличались лишь в деталях, упрощенно принцип работы можно описать следующим образом: ядерный ректор нагревает поступающую в специальные емкости смесь (разные варианты, от аммиака до водорода) с последующим выбросом через сопла под высоким давлением. Однако вариант крылатой ракеты, о которой говорил российский президент, не подходит ни под один из примеров конструкций, разрабатываемых ранее.

Дело в том, что, по словам Путина, ракета имеет практически неограниченную дальность полета. Это, конечно, нельзя понимать так, что ракета может летать годами, но можно расценить как прямое указание на то, что дальность ее полета многократно превышает дальность полета современных крылатых ракет. Второй момент, который нельзя не заметить, тоже связан с заявленной неограниченной дальностью полета и, соответственно, работы силового агрегата крылатой ракеты. К примеру гетерогенный реактор на тепловых нейтронах, испытанный в двигателе РД-0410, разработкой которого занимались Курчатов, Келдыш и Королев, имел ресурс работы на испытаниях только 1 час и в этом случае о неограниченной дальности полета такой крылатой ракеты с ядерным двигателем не может быть и речи.

Все это наводит на мысль о том, что российские ученые предложили совершенно новую, ранее не рассматриваемую концепцию строения, в которой для нагрева и последующего выброса из сопла используется вещество, имеющее намного экономный ресурс расходования на больших расстояниях. Как пример, это может быть ядерный воздушно-реактивный двигатель (ЯВРД) совершенно нового образца, в котором рабочей массой является атмосферный воздух, нагнетаемый в рабочие емкости компрессорами, нагреваемый ядерной установкой с последующим выбросом через сопла.

Также стоит отметить, что анонсированная Владимиром Путиным крылатая ракета с ядерным силовым агрегатом умеет облетать зоны активного действия систем противовоздушной и противоракетной обороны, а также держать путь к цели на малых и сверхмалых высотах. Это возможно только за счет оснащения ракеты системами следования ландшафту местности, устойчивыми к помехам, создаваемых средствами радиоэлектронной борьбы противника.

Первая стадия - отрицание

Немецкий эксперт в области ракетной техники Роберт Шмукер посчитал заявления В. Путина совершенно неправдоподобными. «Не могу представить, что россияне могут создать маленький летающий реактор», - рассказал эксперт в интервью «Дойче Велле».

Могут, герр Шмукер. Только представьте.

Первый отечественный спутник с ядерной энергоустановкой (“Космос-367”) был запущен с Байконура в далеком 1970 году. 37 тепловыделяющих сборок малогабаритного реактора БЭС-5 “Бук”, содержащих 30 кг урана, при температуре в первом контуре 700°С и тепловыделении 100 кВт обеспечивали электрическую мощность установки 3 кВт. Масса реактора - менее одной тонны, расчетное время работы 120-130 суток.

Эксперты выразят сомнение: слишком мала мощность у этой ядерной “батарейки”... Но! Вы посмотрите на дату: это было полвека назад.

Низкий КПД - следствие термоэмиссионного преобразования. При других формах передачи энергии показатели значительно выше, например у АЭС значение КПД находится в пределах 32-38%. В этом смысле особый интерес представляет тепловая мощность “космического” реактора. 100 кВт - серьезная заявка на победу.

Стоит отметить, БЭС-5 “Бук” не относится к семейству РИТЭГов. Радиоизотопные термоэлектрогенераторы преобразуют энергию естественного распада атомов радиоактивных элементов и обладают ничтожной мощностью. В то же время “Бук” - настоящий реактор с управляемой цепной реакцией.

Следующее поколение советских малогабаритных реакторов, появившихся в конце 1980-х гг., отличалось еще меньшими габаритами и большим энерговыделением. Таким был уникальный “Топаз”: по сравнению с “Буком” количество урана в реакторе сократилось втрое (до 11,5 кг). Тепловая мощность возросла на 50% и составила 150 кВт, время непрерывной работы достигло 11 месяцев (реактор данного типа был установлен на борту разведывательного спутника “Космос-1867”).


Ядерные космические реакторы - внеземная форма смерти. При потере управления “падающая звезда” не исполняла желаний, но могла отпустить “счастливчикам” их грехи.

В 1992 году два оставшихся экземпляра малогабритных реакторов серии “Топаз” были проданы в США за 13 млн. долл.

Главный вопрос: достаточно ли мощности у подобных установок для их использования в качестве ракетных двигателей? Путем пропуска рабочего тела (воздух) через горячую активную зону реактора и получения на выходе тяги по закону сохранения импульса.

Ответ: нет. “Бук” и “Топаз” - ядерные электростанции компактных размеров. Для создания ЯРД необходимы другие средства. Но общий тренд виден невооруженным глазом. Компактные ЯЭУ давно созданы и существуют на практике.

Какую мощность должна иметь ЯЭУ для применения в качестве маршевого двигателя крылатой ракеты, аналогичной по размерам Х-101?

Не можешь найти работу? Умножь время на мощность!
(Сборник универсальных советов.)

Найти мощность также не составит большого труда. N=F×V.

По официальным данным, крылатые ракеты Ха-101, как и КР семейства “Калибр”, оснащаются короткоресурсным ТРДД-50, развивающим тягу 450 кгс (≈ 4400 Н). Маршевая скорость крылатой ракеты - 0,8М, или 270 м/с. Идеальный расчетный КПД турбореактивного двухконтурного двигателя - 30%.

В этом случае потребная мощность двигателя крылатой ракеты всего в 25 раз превышает тепловую мощность реактора серии “Топаз”.

Несмотря на сомнения немецкого эксперта, создание ядерного турбореактивного (либо прямоточного) ракетного двигателя - реалистичная задача, отвечающая требованиям современности.

Ракета из ада

«Все это сюрприз - крылатая ракета с ядерными двигателями, - отметил Дуглас Барри, старший научный сотрудник Международного Института стратегических исследований в Лондоне. - Эта идея не нова, об этом говорили в 60-х, но она столкнулась с большим количеством препятствий».

Об этом не только говорили. На испытаниях в 1964 году ядерный прямоточный двигатель “Тори-IIС” развил тягу 16 тонн при тепловой мощности реактора 513 МВт. Имитируя сверхзвуковой полет, установка израсходовала за пять минут 450 тонн сжатого воздуха. Реактор проектировался очень “горячим” - рабочая температура в активной зоне достигала 1600°С. Конструкция имела очень узкие допуски: на ряде участков допустимая температура была всего на 150-200°С ниже температуры, при которых плавились и разрушались элементы ракеты.

Хватало ли этих показателей для применения ЯПВРД в качестве двигателя на практике? Ответ очевиден.

Ядерный ПВРД развил большую (!) тягу, чем турбопрямоточный двигатель “трехмахового” разведчика SR-71 “Блэк бёрд”.


"Полигон-401", испытания ядерного ПВРД

Экспериментальные установки “Тори-IIA” и “-IIC” - прототипы ядерного двигателя крылатой ракеты SLAM.

Дьявольское изобретение, способное, по расчетам, пронзить 160 000 км пространства на минимальной высоте со скоростью 3М. Буквально “выкашивая” всех, кто встречался на её скорбном пути, ударной волной и громовым раскатом в 162 дБ (смертельное значение для человека).

Реактор боевого ЛА не имел никакой биологической защиты. Разорванные после пролета SLAM барабанные перепонки показались бы незначительным обстоятельством на фоне радиоактивных выбросов из сопла ракеты. Летающее чудовище оставляло за собой шлейф шириной более километра с дозой излучения 200-300 рад. По расчетам, за один час полета SLAM заражала смертельной радиацией 1800 квадратных миль.

Согласно расчетам, длина летательного аппарата могла достигать 26 метров. Стартовая масса - 27 тонн. Боевая нагрузка - термоядерные заряды, которые требовалось последовательно сбросить на несколько советских городов, вдоль маршрута полета ракеты. После завершения основной задачи SLAM должна была еще несколько суток кружить над территорией СССР, заражая все вокруг радиоактивными выбросами.

Пожалуй, самое смертоносное из всех, которые пытался создать человек. К счастью, до реальных запусков дело не дошло.

Проект с кодовым названием “Плутон” был свернут 1 июля 1964 года. При этом, по словам одного из разработчиков SLAM, Дж. Крейвена, никто из военного и политического руководства США не сожалел о принятом решении.

Причиной отказа от “низколетящей ядерной ракеты” стало развитие межконтинентальных баллистических ракет. Способных нанести необходимый ущерб за меньшее время при несопоставимых рисках для самих военных. Как справедливо заметили авторы публикации в журнале Air&Space: МБР, по крайней мере, не убивали всех, кто находился рядом с пусковой установкой.

До сих пор неизвестно, кто, где и как планировал проводить испытания исчадия ада. И кто бы отвечал, если бы SLAM сбилась с курса и пролетела над Лос-Анджелесом. Одно из безумных предложений предлагало привязать ракету за трос и гонять по кругу над безлюдными районами шт. Невада. Однако сразу возникал другой вопрос: что делать с ракетой, когда в реакторе выгорят последние остатки топлива? К месту, где “приземлится” SLAM, будет нельзя приближаться в течение столетий.

Жизнь или смерть. Окончательный выбор

В отличие от мистического “Плутона” родом из 1950-х гг., проект современной ядерной ракеты, озвученный В. Путиным, предлагает создание эффективного средства для прорыва американской ПРО. Средство гарантированного взаимного уничтожения - важнейший критерий ядерного сдерживания.

Превращение классической “ядерной триады” в дьявольскую “пентаграмму” - с включением в неё средств доставки нового поколения (ядерные крылатые ракеты неограниченной дальности и стратегические ядерные торпеды “статус-6”) вкупе с модернизацией боевых блоков МБР (маневрирующий “Авангард”) есть разумный ответ на появление новых угроз. Политика Вашингтона в отношении ПРО не оставляет Москве другого выбора.

“Вы развиваете свои антиракетные системы. Дальность антиракет возрастает, точность увеличивается, это оружие совершенствуется. Поэтому нам нужно адекватно отвечать на это, чтобы мы могли преодолевать систему не только сегодня, но и завтра, когда у вас появится новое оружие.”


В. Путин в интервью NBC.

Рассекреченные подробности экспериментов по программе SLAM/Плутон, убедительно доказывают, что создание ядерной крылатой ракеты было возможно (технически осуществимо) еще шесть десятилетий назад. Современные технологии позволяет вывести идею на новый технический уровень.

Меч ржавеет от обещаний

Несмотря на массу очевидных фактов, объясняющих причины появления “супероружия президента” и развеивающих любые сомнения насчет “невозможности” создания подобных систем, в России, как и за рубежом, остается множество скептиков. “Все перечисленное оружие - лишь средство информационной войны”. И следом - самые разные предложения.

Наверное, не стоит принимать всерьез карикатурных “экспертов”, таких, как И. Моисеев. Руководитель института космической политики (?), заявивший интернет-изданию The Insider: “Нельзя на крылатую ракету ставить ядерный двигатель. Да и нет таких двигателей”.

Попытки “разоблачения” заявлений президента делаются и на более серьезном аналитическом уровне. Подобные “расследования” немедленно обретают популярность среди либерально настроенной общественности. Скептики приводят следующие аргументы.

Все озвученные комплексы относятся к стратегическим сверхсекретным вооружениям, проверить или опровергнуть существование которых не представляется возможным. (В самом послании Федеральному собранию демонстрировалась компьютерная графика и кадры пусков, неотличимые от испытаний других типов крылатых ракет.) В то же время никто не говорит, к примеру, о создании тяжелого ударного беспилотника или боевого корабля класса “эсминец”. Оружие, которое в скором времени пришлось бы наглядно продемонстрировать всему миру.

По мнению некоторых “разоблачителей”, сугубо стратегический, “секретный” контекст сообщений может указывать на их неправдоподобный характер. Что ж, если это главный аргумент, то о чем тогда спор с этими людьми?

Встречается и другая точка зрения. Шокирующие о ядерных ракетах и беспилотных 100-узловых подлодках делаются на фоне очевидных проблем ВПК, встречающихся при реализации более простых проектов “традиционных” вооружений. Заявления о ракетах, разом превзошедших все существующие образцы вооружений, имеют резкий контраст на фоне общеизвестной ситуации с ракетостроением. Скептики приводят в пример массовые отказы при пусках “Булавы” или затянувшееся на два десятилетия создание РН “Ангара”. Сама началась в 1995 году; выступая в ноябре 2017 г., вице-премьер Д. Рогозин пообещал возобновить запуски “Ангары” с космодрома “Восточный” только в... 2021 г.

И, кстати, почему без внимания был оставлен “Циркон” - главная военно-морская сенсация предыдущего года? Гиперзвуковая ракета, способная перечеркнуть все существующие концепции морского боя.

Новость о поступлении в войска лазерных комплексов привлекло внимание производителей лазерных установок. Существующие образцы оружия направленной энергии создавались на обширной базе исследований и разработок высокотехнологичного оборудования для гражданского рынка. К примеру, американская корабельная установка AN/SEQ-3 LaWS представляет “пачку” из шести сварочных лазеров суммарной мощностью 33 кВт.

Заявление о создании сверхмощного боевого лазера контрастируют на фоне весьма слабой лазерной промышленности: Россия не входит в число крупнейших мировых производителей лазерного оборудования (Coherent, IPG Photonics или китайская Han" Laser Technology). Поэтому внезапное появление образцов лазерного оружия высокой мощности вызывает у специалистов неподдельный интерес.

Вопросов всегда больше, чем ответов. Дьявол кроется в мелочах, однако официальные источники дают крайне скудное представление о новейших вооружениях. Зачастую даже неясно, система уже готова к приятию на вооружение, или её разработка находится на определенном этапе. Известные прецеденты, связанные с созданием подобного оружия в прошлом, свидетельствуют, что возникающие при этом проблемы не решаются по щелчку пальцев. Любителей технических новинок волнует выбор места для проведения испытаний КР с ядерным двигателем. Или способы связи с подводным беспилотником “Статус-6” (фундаментальная проблема: под водой не работает радиосвязь, во время проведения сеансов связи субмарины вынуждены подниматься к поверхности). Было бы интересно услышать пояснение и о способах применения: по сравнению с традиционными МБР и БРПЛ, способными начать и окончить войну в течение часа, “Статусу-6” потребуется несколько суток, чтобы добраться до побережья США. Когда там уже никого не будет!

Окончен последний бой.
Остался кто-нибудь живой?
В ответ - только ветра вой…

С использованием материалов:
Air&Space Magazine (апрель-май 1990)
The Silent War, автор John Craven

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны - до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы - 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

  • на создание и выведение на орбиту модулей буксира;
  • на закупку рабочей ядерной установки;
  • эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.

О крылатой ракете с "неограниченной дальностью за счет сверхмощной ядерной энергетической установки" в габаритах крылатых ракет "Томагавк" (0,53 м диаметром и весом 1400 кг) или Х-101 (0,74 м описанным диаметром и весом 2300 кг).

Советский прототип РД-0410 (Индекс ГРАУ - 11Б91 , известен также как «Иргит» и «ИР-100») - первый и единственный советский ядерный ракетный двигатель

Начнём с видео презентации ВВП

Резюмируя ощущения от показанного проекта можно сказать, что это крайнее удивление на грани недостоверности показанного. Попробую объяснить, почему.

Да, исторически разработки крылатых ракет с прямоточным ядерным воздушным двигателем были: это ракета SLAM в США с реактором TORY-II, концепт Avro Z-59 в Великобритании, проработки в СССР.

Современный рендер концепта ракеты Avro Z-59, массой около 20 тонн.

Однако все эти работы шли в 60х как НИОКР разной степени глубины (дальше всех зашли США, о чем ниже) и продолжения в виде образцов на вооружении не получили. Не получили по той же причине, что и многие другие проработки Atom Age - самолеты, поезда, ракеты с ЯЭУ. Все эти варианты транспортных средств при некоторых плюсах, которые дает бешенная плотность энергии в ядерном топливе, имеют очень серьезные минусы - дороговизна, сложность эксплуатации, требования постоянной охраны, наконец неудовлетворительные результаты разработок, про которые обычно что мало известно (публикуя результаты НИОКР всем сторонам выгоднее выставлять достижения и скрывать неудачи).

В частности, для крылатых ракет гораздо проще создать носитель (подводную лодку или самолет), который "подтащит" множество кр к месту пуска, чем морочится с небольшим парком (а большой парк освоить невероятно сложно) крылатых ракет, запускаемых со своей территории. Универсальное, дешевое, массовое средство победило в итоге малосерийное, дорогое и с неоднозначными плюсами. Атомные крылатые ракеты не пошли дальше наземных испытаний.

Этот концептуальный тупик 60х годов КР с ЯЭУ, на мой взгляд, актуален и сейчас, поэтому основной вопрос к показанному "зачем??". Но еще более выпуклым его делают проблемы, которые возникают при разработке, испытаниях и эксплуатации подобного оружия, о чем говорим дальше.

Итак, начнем с реактора. Концепты SLAM и Z-59 были трехмаховым низколетящими ракетами внушительных габаритов и массы (20+ тонн после сброса стартовых ускорителей). Страшно затратный низколетящий сверхзвук позволял по максимуму использовать наличие практически не ограниченного источника энергии на борту, кроме того, важной чертой ядерного воздушного реактивного двигателя является улучшения кпд работы (термодинамического цикла) при росте скорости, т.е. та же идея, но на скоростях в 1000 км/ч имела бы гораздо более тяжелый и габаритный двигатель. Наконец, 3М на высоте в сотню метров в 1965 году означало неуязвимость для ПВО.

Получается, что раньше концепция КР с ЯЭУ "завязывалась" на высокой скорости, где преимущества концепции были сильными, а конкуренты с углеводородным топливом ослабевали.

Показанная же ракета, на мой взгляд, околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита

Активная зона первого тестового реактора TORY-II-A во время сборки.

Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра? Начнем с принципиально минимального реактора - болванки из Pu239. Хороший пример реализации такой концепции - космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.

Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности. Самым первым к размеру реактора добавляется размер отражателя - в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu - они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С, или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива - ведь "непродуктивное" поглощение нейтронов в АЗ теперь резко выросло!

Более того, металлическая форма U или Pu теперь не годится - эти материалы и сами не тугоплавкие (плутоний вообще плавится при 634 С), так еще и взаимодействуют с материалом металлических оболочек. Переводим топливо в классическую форму UO2 или PuO2 - получаем еще одно разбавление материала в АЗ, теперь уже кислородом.

Наконец, вспоминаем предназначение реактора. Нам нужно прокачивать через него много воздуха, которому мы будем отдавать тепло. примерно 2/3 пространства займут "воздушные трубки".

TORY-IIC. Твэлы в активно зоне представляю собой шестигранные полые трубки из UO2, покрытые защитной керамической оболочкой, собранные в инкалоевых ТВС.

В итоге минимальный диаметр АЗ вырастает до 40-50 см (для урана), а диаметр реактора с 10-сантиметровым бериллиевым отражателем до 60-70 см. Мои наколеночные прикидки "по подобию" подтверждаются проектом ядерного реактивного двигателя MITEE , предназначенного для полетов в атмосфере Юпитера. Этот совершенно бумажный проект (например температура АЗ предусматривается в 3000 К, а стенки из бериллия, выдерживающего от силы 1200 К) имеет рассчетный по нейтронике диаметр АЗ в 55.4 см, при том, что охлаждение водородом позволяет слегка уменьшить размеры каналов, по которым прокачивается теплоноситель.

Сечение активной зоны атмосферного реактивного ядерного двигателя MITEE и минимальные достижимые массы для различных вариантов геометрии АЗ - в скобках обозначены отношения длины к шагу твела (первай цифра), количество твэлов (вторая цифра), количество элементов отражателя (тертяя цифра) для разных композиций. Небезинтересен вариант с топливом в виде Америция 242m и отражателем из жидкого водорода:)

На мой взгляд воздушный ядерный реактивный двигатель можно впихнуть в ракету диаметром около метра, что впрочем, все же не кардинально больше озвученных 0,6-0,74 м, но все же настораживает.

Так или иначе, ЯЭУ будет иметь мощность ~несколько мегаватт, питаемые ~10^16 распадов в секунду. Это означает, что сам реактор будет создавать радиационное поле в несколько десятков тысяч рентген у поверхности, и до тысячи рентген вдоль всей ракеты. Даже установка нескольких сот кг секторной защиты не сильно снизит эти уровни, т.к. нейтронны и гамма-кванты будут отражаться от воздуха и "обходить защиту". За несколько часов такой реактор наработает ~10^21-10^22 атомов продуктов деления c с активностью в несколько (несколько десятков) петабеккерелей который и после остановки создадут фон в несколько тысяч рентген возле реактора. Конструкция ракеты будет активирована до примерно 10^14 Бк, хотя изотопы будут в основном бета-излучателями и опасны только тормозным рентгеном. Фон от самой конструкции может достигать десятки рентген на расстоянии 10 метров от корпуса ракеты.

Рентген ракеты SLAM. Все приводы пневматические, аппаратура управления находится в капсуле, ослабляющей излучение.

Все эти "веселости" дают представление, что и разработка и испытания подобной ракеты - задача на грани возможного. Необходимо создать целый набор радиационно-стойкого навигационного и управляющего оборудования, испытать это все довольно комплексным образом (радиация, температура, вибрации - и все это на статистику). Летные испытания с работающим реактором в любой момент могут превратиться в радиационную катастрофу с выбросом от сотен террабеккерелей до единиц петабеккерелей. Даже без катастрофических ситуаций весьма вероятная разгерметизация отдельных твэлов и выброс радионуклидов.

Конечно, в России до сих пор есть Новоземельский полигон на котором можно проводить такие испытания, однако это будет противоречить духу договора о запрещении испытаний ядерного оружия в трех средах (запрещение вводилось с целью недопущения планомерного загрязнения атмосферы и океана радинуклидами).

Наконец, интересно, кто в РФ мог бы заниматься разработкой подобного реактора. Традиционно изначально высокотемпературными реакторами занимался Курчатовский институт (общее проектирование и расчеты), Обнинский ФЭИ (экспериментальная отработка и топливо), НИИ "Луч" в Подольске (топливо и технологии материалов). Позже к проектированию подобных машин подключился коллектив НИКИЭТ (например реакторы ИГР и ИВГ - прообразы активной зоны ядерного ракетного двигателя РД-0410). Сегодня НИКИЭТ обладает коллективом конструкторов, которые выполняют работы по проектированию реакторов (высокотемпературный газоохлаждаемый РУГК , быстрые реакторы МБИР , ), а ФЭИ и "Луч" продолжают заниматься сопутствующими расчетами и технологиями соотвественно. Курчатовский институт же в последние десятилетия больше перешел к теории ядерных реакторов.

Ближайшими родственниками воздушных ЯРД являются ЯРД космические, продуваемые водородом.

Резюмируя, хочется сказать, что создание крылатой ракеты с воздушным реактивным двигателеям с ЯЭУ является в целом выполнимой задачей, но одновременно крайне дорогой и сложной, требующей значимой мобилизации людских и финансовых ресурсов, как мне кажется в большей степени, чем все остальные озвученные проекты ("Сармат", "Кинжал", "Статус-6", "Авангард"). Очень странно, что эта мобилизация не оставила ни малейшего следа. А главное, совершенно не понятно, в чем польза от получения подобных образцов вооружений (на фоне имеющихся носителей), и как они могут перевесить многочисленные минусы - вопросы радиционной безопасности, дороговизны, несовместимости с договорами о сокращении стратегических вооружений.

P.S. Впрочем "источники" уже начинают смягчать ситуацию: "Источник, близкий к ВПК, рассказал «Ведомостям », что радиационная безопасность при испытаниях ракеты была обеспечена. Ядерную установку на борту представлял электрический макет, говорит источник."

РД-0410

В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, замедлителем служил гидрид циркония, отражатели нейтронов - из бериллия, ядерное топливо - материал на основе карбидов урана и вольфрама, с обогащением по изотопу 235 около 80 %. Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проектом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где охлаждал тепловыделяющие сборки, нагреваясь при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода.

Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Внереакторные узлы были отработаны полностью.

Крайне интересное видео:

Довольно много интересных вещей показано. Судя по всему, ролик был сделан в конце 80 для внутреннего минсредмашевского/минобщемашевского употребления, а в начале 90х туда были вставлены английские субтитры для того, что бы заинтересовать технологиями американцев.